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SUMMARY

Quantifying the risk of progression to Alzheimer’s disease (AD) could help iden-
tify persons who could benefit from early interventions. We used data from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI, n = 544, discovery cohort)
and the National Alzheimer’s Coordinating Center (NACC, n = 508, validation
cohort), subdividing individuals with mild cognitive impairment (MCI) into risk
groups based on cerebrospinal fluid amyloid-b levels and identifying differential
gray matter patterns. We then created models that fused neural networks with
survival analysis, trained using non-parcellated T1-weighted brain MRIs from
ADNI data, to predict the trajectories of MCI to AD conversion within the
NACC cohort (integrated Brier score: 0.192 [discovery], and 0.108 [validation]).
Using modern interpretability techniques, we verified that regions important
for model prediction are classically associated with AD. We confirmed AD diag-
nosis labels using postmortem data. We conclude that our framework provides
a strategy for risk-based stratification of individuals with MCI and for identifying
regions key for disease prognosis.
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INTRODUCTION

The projected cost of caring for millions of individuals who have Alzheimer’s disease (AD) worldwide is

going to exceed a trillion dollars in a few years.1 In addition to the enormous health burden, patients

and their caregivers experience financial, physical, and psychological strain. A theory regarding repeated

drug failure in AD is that patients undergoing experimental therapies are selected too late in the disease

process.2 Therefore, it is important to identify patients at a high risk of progression to AD in early stages of

the disease. Further, as disease-modifying therapies are undergoing regulatory scrutiny,3 at-risk persons

who are identified in a timely fashion could benefit from such interventions.

Not all individuals with mild cognitive impairment (MCI) develop AD.4 To this end, several frameworks have

been constructed to identify individuals with normal cognition orMCI who progress to AD. Themost common

approach has been to use a classification framework to distinguish individuals who remain stable with MCI

from those who progress to AD dementia.5–8 Most of these classifiers have demonstrated excellent perfor-

mance, utilizing clinical data, demographic data, and/or imaging data in combination. Models have reached

receiver-operating-characteristic areas-under-the-curve of over 0.9.5 Others have focused instead on building

models to predict time-to-progression by estimating survival, or time-to-event, curves.9–13 These frameworks

predominantly utilize a combination of clinical, biological, and imaging measurements to forecast disease

progression. Performance of these models has commonly been assessed with concordance index (CI), which

measures howwell a model captures risk rank-ordering.10,14 The CI is ameasurement that takes the predicted

risk of some event for each sample in a dataset, and for all available pairs of samples, takes the proportion

where the sample with the higher predicted event risk experiences the event earlier.13,15,16

Deep learning survival models specifically have been developed and utilized in several areas of medicine

like oncology, and have demonstrated improved performance over more conventional survival ana-

lyses.17,18 Such models, in addition to conventional machine-learning models, have also been applied to

forecast progression from MCI to AD.12,13,19,20 While certain deep learning survival frameworks such as

DeepSurv21 utilize a Cox-proportional hazards-based model, there are several deep learning survival
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frameworks that are more flexible and do not rely on the proportional hazard assumption, such as neural

multi-task regression, Weibull-based survival models, DeepHit, and Nnet-survival.13,20,22,23 The former

three have demonstrated excellent performance in the setting of AD. However, attempts at utilizing MRI

to directly model time-to-progression in AD have so far relied on data from pre-specified brain regions par-

cellated with curated atlases.13,24 Others have utilized deep learning to extract features from demarcated

regions such as the hippocampus.25 Additionally, generalizability of these high-performing models re-

mains unclear, as most of them have relied on data from a single cohort. Moreover, attempts to map inde-

pendent clinical evaluations with clinicopathologic associations were not considered. Such connections

with the reference standards can ground model predictions with biological evidence. To address these

gaps, we developed a flexible deep learning survival framework that can directly use structural brain

MRIs, without prior assumptions or region of interest (ROI) selection, to forecast disease progression

from MCI to AD. We further confirmed our findings with data from an external cohort, interpretability anal-

ysis and gold-standard evidence.

We hypothesized that models combining flexible survival prediction, such as Nnet-survival,22 with deep

neural networks—either multilayer perceptrons (MLPs) or convolutional neural networks (CNNs)—and

T1-weighted MRI would be more accurate in predicting progression risk than a Cox proportional hazard-

based model. Cox proportional hazard-based models carry several assumptions, including the assumption

that risk curves for different individuals differ by a constant multiple across time (i.e., the proportional haz-

ard assumption).16,26 We hypothesized that a model that allowed for time-varying differences between

samples instead could be of more value. We further hypothesized that, by utilizing a CNN with minimally

processed MRIs as input, one can learn the imaging features necessary to make accurate predictions.

RESULTS

Demographic analysis

We first characterized our discovery and validation cohorts (Figure 1; Tables S1 and S2). We found that per-

sons in the National Alzheimer’s Coordinating Center (NACC) cohort progressed to AD more rapidly than

those in the Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort beginning at 48 months (Figure 1A)

(X2(1) = 0.06, p = 0.80 at 24 months; X2(1) = 14.56, p = 0.0001 at 48 months; nNACC = 508, nADNI = 544 per-

sons). The average age in the NACC cohort was higher than that of the ADNI cohort (Figure 1Bi) (Mann-

Whitney U test, U = 127436, p = 0.029, nNACC = 508, nADNI = 544). Overall, the ADNI participants received

more education than NACC participants (Mann-Whitney U test, U = 153880, nADNI = 544, nNACC = 508, p =

0.001). Mini-Mental State Exam (MMSE) scores are shown for reference in Figure 1Bii, though given the

large number of NACC patients without concurrent MMSE scores at the time of MCI diagnosis, the discov-

ery and validation datasets were not compared statistically.

CSF tau andp-tau levels were lower in personswho tookmore than 4 years to progress toAD (Figure 1C) (t-tau,

Kruskal-Wallis test, H = 71.0, df = 3, p < 0.0001, n<2 years = 390, n<4 years = 55, n>4 years = 37, nCensored = 62;R 4

years vs. < 2 years, p = 0.011,R4 years vs. < 4 years, 0.0086; p-tau, H = 79.4, df = 3, p < 0.0001, n<2 years = 390,

n<4 years = 55, n>4 years = 37, nCensored = 62; R 4 years vs. < 2 years, p = 0.011, R4 years vs. < 4 years, 0.0077;

Benjamini-Hochberg-corrected p values for 6 pairwise comparisons). There were no statistically significant dif-

ferences in sex (X2[3] = 1.33, p = 0.25, nADNI = 544, nNACC = 508) or APOE e4 status (X2[3] = 4.37, p = 0.11,

nADNI = 544, nNACC = 379; 129 subjects in NACC without APOE data [Table S1; Figures 1D and 1E]). Propor-

tions of persons in each of the progression groups used in other subplots of Figure 1 are shown in Figure 1F.

Finally, ADNI had a larger proportion of persons identifying as ‘‘white’’ than NACC (Figure 1G) (X2[1] = 30.2,

p < 0.0001, nADNI = 532, nNACC = 491, with 12 ADNI and 17 NACC having an unknown race or identifying as

multiple races). The two populations were not significantly different with respect to the proportion of persons

identifying as Hispanic or Latino (X2[1] = 1.47, p = 0.23, nADNI = 541, nNACC = 506, with 3 ADNI and 2 NACC

patients having an unknown ethnicity).

Survival-based validation of risk groups

We sought to establish that we were still able to risk stratify our external dataset using anatomical features

despite the differences between it and the discovery dataset. We divided persons in our discovery cohort

by Ab quartiles, then computed Z-scored gray matter volumes (GMVs) for persons within each quartile and

assigned risk groups based on correlations with averaged Z-scored GMVs for each Ab quartile. We corre-

lated Z-scored GMVs in our external dataset with the averaged, Z-scored GMVs from the discovery dataset

(Figure 2A). As expected, Z-scored GMVs within each of the four risk groups were highly correlated
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Figure 1. Study population

Summary statistics of clinical and demographic parameters of persons from the Alzheimer’s Disease Neuroimaging

Initiative (ADNI) and National Alzheimer’s Coordinating Center (NACC) cohorts are shown.

(A) Kaplan-Meier survival curves with 95% confidence intervals were computed for our two populations (ADNI: n = 544, 390

right-censored; NACC: n = 508, 378 right-censored). The number of persons at risk of progression, the number of persons

censored, and the number of persons with ‘‘events’’, or progression to AD, left-inclusive, are shown in the table to the left

of the survival curves. The hazard ratio of the two curves is included.

(B) The distribution of age (i) and Mini-Mental State Exam score (ii) for persons in the NACC and ADNI datasets are shown

for persons in each progression category*.

(C) Concentration profiles of three different CSF biomarkers in the two cohorts, Ab-42, total tau (t-tau), and

phosphorylated tau (p-tau) are shown for persons in each progression category. Statistics were not computed for the

NACC dataset due to the large amount of missing data.

(D, E, and F) Distribution of sex and number of APOE e4 alleles of persons in each progression category, and the

proportions of patients in each progression category are shown.

(G) Pie charts summarizing the breakdown of race (left) and ethnicity (right) for each cohort. *Progression categories are—

progression within 2 years, between 2 and 4 years, after 4 years, and censored or otherwise not progressed. See also

Tables S1 and S2 for summary statistics for subplots 1A–1F.
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between the two cohorts (Spearman’s correlation coefficient, H in ADNI vs. H in NACC, r = 0.85, p < 0.0001;

IH in ADNI vs. IH in NACC, r= 0.73, p < 0.0001; IL in ADNI vs. IL in NACC, r= 0.70, p < 0.0001; L in ADNI vs. L

in NACC, r = 0.87, p < 0.0001; n = 66 brain regions for all comparisons). Additionally, Z-scored GMVs were

lower overall in the higher-risk groups (Kruskal-Wallis, X2[3] = 158, p < 0.0001; H vs. IL, p < 0.0001; H vs. L,

p < 0.0001; IH vs. IL, p < 0.0001; IH vs. L, p < 0.0001; H vs. IH, p = 0.83 and L vs. IL, p = 0.043; p values

Benjamini-Hochberg corrected; nH = 139, nIH = 105, nIL = 90, nL = 206, ADNI dataset).

To confirm that differences in GMVs corresponded to differences in progression risk, we examined survival

curves for each group in ADNI and NACC at different time points (Figure 2B, and Table S3). In the ADNI

dataset, H persons had a significantly greater risk of AD progression compared with IH persons at times

24 months and 48 months (X2[1] = 7.02, p = 0.010, X2[1] = 4.84, p = 0.028, Benjamini-Hochberg corrected

within each time and cohort) after MCI diagnosis. IH and IL persons differed at 48 months (X2[1] = 5.59, p =

0.027). Finally, IL and L persons had significantly different progression risk profiles at both 24 months and

48 months (X2[1] = 10.0, p = 0.0023; X2[1] = 4.81, p = 0.028). A similar pattern was evident in the external

dataset. Specifically, H persons had a greater probability of progression than both IL and L persons at

24 months (X2[1] = 7.50, p = 0.018, X2[1] = 9.85, p = 0.010), and had a greater probability than L persons

at 96 months (X2[1] = 8.45, p = 0.016). H persons also had a greater probability of progression than IH per-

sons at 48 (X2[1] = 9.49, p = 0.006) and 96 months (X2[1] = 7.79, p = 0.016).

Radiologist validation of atrophy patterns in different risk groups

Clinical validation of brain atlas-derived anatomical changes was performed with expert grading of 48

randomly sampled MRIs from ADNI, 12 from each risk group, and shown in Figure 3A. While agreement be-

tween radiologists was modest (mean ICC across all seven brain regions and hemispheres, 0.36G 0.13 (Gsd),

nsubjects = 48, nraters = 5), their overall assessments revealed higher atrophy in the higher-risk groups (H and IH)

comparedwith the lower risk groups (L and IL) in the noted regions aside from the insula (MannWhitney-U test,

UCingulate = 397, p = 0.026; UFrontal = 432, p = 0.0084; UInsula = 367, p = 0.10; UMesial Temporal = 399, p = 0.026;

UOccipital = 421, p = 0.0084; UOther Temporal = 432, p = 0.0084; UParietal = 429, p = 0.0084 [Benjamini-Hochberg

corrected p values, nhigher-risk = 24 averaged grades, nlower-risk = 24 averaged grades for each comparison])

(Figure 3A).

Having observed our posited relationship between global atrophy and risk shown via expert grading, we

next sought to confirm that our parcellation method captured regional atrophy. We found significant nega-

tive correlations betweenmean expert-grades for each lobe andmean Z-scored GMVs averaged over each

lobe computed via our segmentation pipeline (Figure 3B), suggesting good correspondence between

model-derived GMV estimates and brain atrophy.

Deep learning models

Once establishing the association of GMV atrophy with a biological measure of disease (CSF Ab levels), and

accordingly with progression risk to AD, we sought to generate a method of risk stratification that did not

require a priori knowledge of CSF data, parameters such as a fixed number of risk groups, or parcellated

brain regions. We trained multiple deep learning models, including baseline multi-layer perceptrons

(MLPs) with and without CSF data, and a convolutional neural network utilizing a survival loss function

(S-CNN), in addition to two reference models from the literature: an MLP utilizing a Weibull survival model

(‘‘Weibull’’)13 and a baseline Cox proportional hazard (CPH) model combined with L1 and L2 loss. A general

schematic for our models is shown in Figure 4A, with an exemplar prediction curve in Figure 4B and asche-

matic of our S-CNN in Figure S1. Models were evaluated and compared using concordance indices (CI) and

integrated Brier scores (IBS). Higher CI and lower IBS correlate with increased risk-discrimination accuracy

and calibration of probabilistic risk prediction models. While many studies investigating risk prediction in

AD compare model performance using CI, few assess the magnitude of the difference between true versus

predicted risk with metrics such as Brier scores. Given differences between Kaplan-Meier curves for NACC

and ADNI (Figure 1A), we thought it was important to perform this step.

As seen in Table 1, all models performed comparably on the discovery dataset in terms of CI and IBS. Our

MLPs did not differ in performance compared to the Weibull model in terms of CI and IBS on the validation

dataset (MLP [GMV] vs. Weibull, t = 1.57, p = 0.21 for CI, t = 0.66, p = 0.61 for IBS; MLP [GMV + CSF], t =

�0.39, p = 0.72 for CI, t =�2.16, p = 0.176 for IBS; all n = 5-folds). The highest performing S-CNNmodel on

our validation dataset utilized transfer learning and fixed layers, demonstrating a CI of 0.676 G 0.003 and
4 iScience 26, 107522, September 15, 2023
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Figure 2. Distribution of risk-based groups

(A) Heatmaps of gray matter volumes (GMVs) Z-scored to the mean and standard deviations of each region in the

complete ADNI dataset (n = 544) are illustrated for persons in each risk group. Warmer colors indicate larger Z-scored

GMVs and cooler colors indicate smaller Z-scored GMVs.

(B) Survival curves for persons in each of the risk groups in the ADNI and NACC dataset, compared at time points 24, 48,

and 96months, with their 95% confidence intervals. The numbers of patients at risk of progression, the numbers censored,

and the number that have progressed, left-inclusive, are shown below the survival curves, in addition to pairwise hazard

ratios and their 95% confidence intervals. Benjamini-Hochberg-corrected p-values are included next to their

corresponding pairwise hazard ratios. Comprehensive, pairwise statistics are shown in Table S3. H – high-risk; IH –

intermediate-high-risk; IL – intermediate-low-risk; L – low-risk.
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Figure 3. Radiologist confirmation of atrophy grade differences between groups

(A) Radiologist atrophy grades for each of 7 brain regions that were reviewed, averaged across both hemispheres and

across 5 different radiologists. The grade of atrophy in each region is denoted on the y axis, where 3 corresponds to

‘‘severe’’ atrophy, 2 to ‘‘moderate’’ atrophy, 1 to ‘‘mild’’ atrophy, and 0 to no atrophy. Grades are divided by subjects

within the H, IH, IL, and L risk groups on the x axis.

(B) Mean Z-scored GMVs of parcellated brain regions within each lobe are plotted against the mean radiologist’s grade

within each graded lobe, averaged across hemispheres, with a 95% bootstrapped confidence interval using 1000

repetitions. Spearman correlation coefficients between mean Z-scored GMVs and radiologist grades are included within

each plot, along with their Benjamini-Hochberg-corrected p-values.
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integrated Brier score of 0.122 G 0.013 (Table 1). Its CI was 4.4% lower than our MLP and 2.9% lower than

the Weibull model (t = �8.88, p = 0.0044 vs. MLP; t = 3.40, p = 0.039 vs. Weibull model; corrected p values

with Benjamini-Hochberg; n = 5-folds). The S-CNN did not differ significantly from the other models in IBS

(t = 2.09, p = 0.176 vs. MLP [GMV]; t = 2.10, p = 0.176 vs. Weibull; t = �2.13, p = 0.176 vs. CPH; corrected p

values with Benjamini-Hochberg; n = 5-folds for all comparisons).

Importance of brain regions stratified by risk

We next investigated whether our CNN-based deep learning framework would reveal regions ‘‘important’’

for forecasting survival, whether important regions would differ based on CSF-driven risk group, and

whether these would align with the literature. In organizing our results by CSF-driven risk group, we hoped

to capture key differentiating features in persons with GMVs that appear broadly related to a biological

correlate of AD. We computed SHAP values for our S-CNN model, given its comparable IBS to other

state-of-the-art models. SHAP values with large magnitudes indicate that a particular voxel carries a large
6 iScience 26, 107522, September 15, 2023



Table 1. Model summaries and metrics

ADNI NACC

Concordance index Integrated Brier score Concordance index Integrated Brier score

S-CNN 0 $ 756 (0 $ 051) 0 $ 209 (0 $ 050) 0 $ 676 (0 $ 003)a 0 $ 122 (0 $ 013)

MLP, GMV 0 $ 731 (0 $ 032) 0 $ 192 (0 $ 057) 0 $ 707 (0 $ 009)b 0 $ 108 (0 $ 010)

Weibull 0 $ 743 (0 $ 020) 0 $ 205 (0 $ 049) 0 $ 696 (0 $ 010)b 0 $ 105 (0 $ 005)

CPH 0 $ 750 (0 $ 051) 0 $ 182 (0 $ 055) 0 $ 735 (0 $ 014)a 0 $ 104 (0 $ 006)

MLP, GMV + CSF 0 $ 729 (0.022) 0 $ 181 (0 $ 044) 0 $ 699 (0 $ 013)b 0 $ 114 (0 $ 008)

Mean concordance indices and integrated Brier scores for each of the listed models are shown. Metrics were averaged over 5-fold cross validation with standard

deviation shown in parentheses. Concordance indices were averaged over the 3 time bins (24months, 48months, 108months) for each fold. TheMLPs were either

trained with gray matter volumes from Neuromorphometrics parcellations, averaged over hemispheres [GMV], or with gray matter volumes and CSF volumes

from Neuromorphometrics parcellations [GMV + CSF].
aPairwise paired t-test comparisons revealed significant differences, after Benjamini-Hochberg correction, in model performance between CPH and the other

models as well as between CNN and the other models.
bMLP [GMV], MLP [GMV +CSF], andWeibull models had larger Concordance Indices in the NACC dataset compared with the S-CNN after pairwise paired t-test

comparisons, p values with Benjamini-Hochberg correction. Abbreviations: S-CNN – survival convolutional neural network; MLP – multilayer perceptron; CPH –

Cox proportional hazard model.

ll
OPEN ACCESS

iScience
Article
importance and portends either a significantly lower risk or higher risk of progression to AD in our model.

Differences in importance of voxels between different CSF-driven risk groups are shown in Figure 5A. Most

conspicuous here are voxels within the temporal lobe, suggesting that temporal lobe importance is a key

differentiator between risk groups.

Averaged over voxels within each lobe, we see that the mesial temporal lobe has the largest importance

across all risk groups (Figure 5B) (all pairwise p < 0.001, Wilcoxon signed-rank test, Benjamini-Hochberg

corrected, nH = 134, nIH = 129, nIL = 100, nL = 145, Figure 5B). The parietal lobe and other regions of the

temporal lobe demonstrate the next highest importance across all risk groups, followed by the frontal

lobe (all p < 0.0001 aside from TL-O vs. FL in the low-risk group, p = 0.024, signed-rank sum = 4140, Wil-

coxon signed-rank test, Benjamini-Hochberg corrected p values).

Pathological confirmation of out-of-sample dataset labels

Finally, in our external dataset, we sought to confirm accuracy of AD clinical diagnosis labels with postmor-

tem pathology data (Figure 6). Clinical diagnoses are more readily available and used to train and test most

models available in the literature. However, given that pathology is required to definitively confirm a diag-

nosis of AD,27 we wanted to confirm the accuracy of clinical diagnosis where possible.

Our NACC cohort contained 39 persons with ADNC grading, 46 persons with Braak staging, and 45 per-

sons with CERAD scores. Figure 6 illustrates the proportion of persons who progress to AD versus those

who remained MCI for each AD pathology measure; greater severity of AD pathology at autopsy was asso-

ciated with clinically assessed AD progression. For each type of pathology, the proportion of individuals

who were clinically determined to have progressed to AD was significantly higher for those in the most se-

vere category (Braak Stage 6, CERAD C3, High ADNC) compared with the least severe category (Braak

Stage 0, CERAD C0, Not AD) (pairwise Fisher exact tests, Benjamini-Hochberg correction; Braak: p =

0.001; CERAD: p = 0.0047; ADNC: p = 0.0061).

DISCUSSION

In this work, we demonstrate that (1) regional GMV correlates with Ab levels and risk of progression fromMCI

to AD, (2) both MLPs and S-CNNs utilizing only structural imaging data in conjunction with a flexible survival

loss function predict progression risk, and (3) our S-CNNmodel output appears to be drivenby regions that we

classically associate with AD pathology. Thus, these findings represent innovation at the intersection of

neurology and computer science, while underscoring model conformity with biological evidence using

routinely collected information such as structural MRI to quantify risk of progression from MCI to AD.

Most efforts to forecast MCI to AD progression have focused on performing a classification task, discrim-

inating between persons who progress from MCI to AD and those who remain stable.5,28–30 Such models
iScience 26, 107522, September 15, 2023 7



Figure 4. Schematics of the deep learning frameworks

(A) Internal structure of a multilayer perceptron (MLP). Segmented GMVs were used as input to an MLP with two fully

connected layers and used to predict the conditional probability of survival up to 24, 48, and 108 months. An S-CNN was

also constructed to predict the same output.

(B) An example comparison of empirical survival curves (Kaplan-Meier estimate with its 95% confidence interval) and

predicted survival curves (interpolated in 1-month increments) using the conditional probabilities of survival from our MLP

and S-CNN. Also, 95% confidence intervals around of the mean of predicted survival curves were computed via

bootstrapping with 10,000 repetitions are shown. Here, ‘‘*’’ indicates survival convolutional neural network, which can be

seen in detail in Figure S1.
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have achieved AUCs over 0.90 utilizing raw brain imaging, image-derived features, and/or clinical data.5

Other studies have attempted to measure risk utilizing hippocampal features from structural MRI,12 poly-

genic risk scores,31 or deep-learning derived image features.32 Some of these attempts to predict AD pro-

gression risk directly model survival curves utilizing survival methods incorporating imaging features as

input.13,16,20 Only a handful of studies, though, have drawn connections between unparcellated structural

imaging and disease progression.26,33,34 Further, none of these studies verified clinical labels with

pathology.

As our two datasets, ADNI and NACC, exhibit different survival curves, direct comparison with many exist-

ing MCI to AD progression survival methods is challenging. While trained on a different task (predicting
8 iScience 26, 107522, September 15, 2023
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Figure 5. Cortical importance stratified by CSF-based risk groups

(A) Differences between risk groups in absolute SHAP values averaged across all the time bins (24, 48, and 108 months), model predictions, and within each

risk group for each voxel, computed for the external, NACC dataset. Shown in shades of blue are all voxels with a Z score of less than �2.0 and shown in

shades of red are all voxels with a Z score of greater than 2.0. Z-scores were computed across all voxels for each subtracted brain. Values are overlayed on an

exemplar subject’s pre-processed T1-weighted MRI.

(B) Bar groups denoting the mean, absolute SHAP value for voxels in each cortical region, averaged for each participant in the NACC dataset. Error bars

denote bootstrapped 95% confidence intervals. Here, n.s. = not significant; ‘‘*’’ indicates p value < 0.05; ‘‘**’’ indicates p value < 0.01; otherwise, all pairwise

comparisons within each group p < 0.001.
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progression to subsequent stage of AD), N-MTLR boasted a C-index of 0.7781–0.7985 and an IBS between

0.0952 and 0.1086 utilizing only the NACC dataset.20 DeepHit-based and Weibull models have achieved

concordance indices reaching 0.70–0.75 when forecastingMCI progression, albeit when trained and tested

on a single dataset.13 Therefore, by selecting and implementing a state-of-the-art deep learning survival

model using our data, which we denote as the Weibull model,13 we were able to both achieve a proper

comparison to our models and establish external validation of another current state-of-the art model.

Both of our MLPs and the Weibull model performed comparably on the discovery and validation datasets

when using GMVs, though there was a drop-off in CI on the validation dataset. These models also had

similar IBS on the validation dataset. Likely, the relative decrease in IBS from the discovery to validation

dataset is an artifact of differences in censoring, as the weights used to compute IBS were calculated using
iScience 26, 107522, September 15, 2023 9



Figure 6. Risk group-specific associations with postmortem pathology

The proportion of persons who progressed to AD versus those who remained stable with MCI are shown with respect to postmortem AD pathology

measures ADNC, CERAD, and Braak staging. Pairwise Fisher exact test with Benjamini-Hochberg correction were used to evaluate for statistical significance

in differences in proportion of persons who progressed with respect to severity of AD pathology measures. Here ‘‘*’’ indicates p value < 0.05, ‘‘**’’ indicates p

value < 0.01, and ‘‘***’’ indicates p value < 0.001.
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the discovery cohort. Our S-CNN approach performed comparably to our MLP and to the Weibull model

on internal validation and had 5.5–6.9% worse CI but similar IBS on the validation dataset. This constitutes

an important contribution to the literature, as it provides a progression risk framework in which themodel is

allowed to discover salient features for itself.

A few other studies have focused on MCI progression using survival model frameworks with unparcellated

structural imaging as input.26,33,34 ten Kate et al.34 used this approach to identify regions in which gray matter

atrophy was highly predictive of progression from MCI to AD. Vemuri et al.33 similarly used a voxel-based

approach to infer which brain regions are most predictive of progression. However, our deep learning

approach performs this inference step while accomplishing the task of quantifying progression risk and vali-

dating this on an external dataset. While we can use our MLP, the Weibull model, or even our CPH model

to forecast progression and perform inference, this limits us to inferences regarding only GMVs, for example.

A model agnostic to this pre-processing step would be able to discover regions that are important for model

predictions due to their white matter content, gray matter content, or more abstract content such as their

spatial relationships to other regions. For example, in addition to identifying the importance of voxels within

the most well-known AD-associated region, the mesial temporal lobe, our SHAP analysis suggests that voxels

within the parietal lobe are also highly important for portending progression to AD in members from all risk

subgroups. The parietal lobe is the region first affected in one of the four posited AD subtypes posited by Vo-

gel et al.35 Given the growing calls within the machine learning community to evaluate the ‘‘black-box’’ nature

of neural networks,36 our framework builds on our recent work in aiding interpretability,37,38 thereby grounding

our results with established medical knowledge.

In summary, risk-based stratification could be critical to paving the way forward for physicians and pharma-

ceutical companies to provide targeted therapy for persons with MCI who would benefit from early
10 iScience 26, 107522, September 15, 2023
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interventions. We utilized survival-based deep neural networks in conjunction with minimally processed

structural MRI, a widely available, non-invasive technique. Further, by employing state-of-the-art deep

learning methods in conjunction with a SHAP analysis, we were able to identify regions particularly impor-

tant for predicting increased progression risk. We submit that our practical approach to forecasting indi-

vidualized progression risk in persons with MCI can have broad utility in various clinical and research set-

tings with access to routinely collected structural neuroimaging data.
Limitations of the study

There are a few limitations to our study. First, while we create a framework that estimates an individual’s risk

of progression to AD based exclusively on structural MRI, we do not rely on demographic data such as years

of education or on other imaging such as tau or amyloid-PET, diffusion imaging, or functional MRI. This is a

strength in that our methodology does not require further input than a structural MRI to assess the risk of

progression to AD, but also a weakness in that model performance could potentially be improved by incor-

porating these factors. For example, different patterns of tau deposition in AD have been found to corre-

late with rate of progression.35 Therefore, the addition of tau-PET data could potentially augment our risk-

stratification framework, though availability of large, longitudinal, tau-PET datasets is limited. An additional

limitation is that our survival analysis cannot model reversion fromMCI to pre-MCI states; rather, we denote

persons who have not developed AD after a diagnosis of MCI to be ‘‘non-converters.’’ While a different

model could account for this, persons who revert from MCI have been shown to still be at higher risk

than the average population of developing AD.39 Therefore, we believe that predicting progression to

AD is still relevant for this population. Finally, we have a large amount of censoring in our datasets, with

378 persons not having an ‘‘event’’, or AD progression, in our validation cohort, and 390 persons not having

an ‘‘event’’ in the NACC cohort. The large amount of censoring in our dataset underscores the necessity of

utilizing truly external datasets to validate results, as factors such as differences in loss to follow-up could

potentially affect findings.
STAR+METHODS

Detailed methods are provided in the online version of this paper and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY
B Lead contact

B Materials availability

B Data and code availability

d METHOD DETAILS

B Study population and data selection

B ADNI cohort

B ADNI image selection

B CSF analysis

B ADNI image curation for pre-training

B NACC cohort

B Race and ethnicity

B Image registration, normalization, and segmentation

B CSF-based risk group analysis

B Expert-driven assessment

B Deep learning framework

B Survival convolutional neural network

B Reference models

B Cox proportional hazard model

B Interpretability analysis

B SHAP value analysis

B Pathology analysis

d QUANTIFICATION AND STATISTICAL ANALYSIS

B Demographics analysis

B Gray matter volume analysis

B Empirical survival analyses

B Radiology analysis
iScience 26, 107522, September 15, 2023 11



ll
OPEN ACCESS

12

iScience
Article
B Model-based statistics

B Software packages
SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.isci.2023.107522.

ACKNOWLEDGMENTS

We would like to thank Dr. Susan Landau and Ms. Alice Murphy of the Helen Wills Neuroscience Institute at

University of California, Berkeley for sharing image processing scripts. We also thank all the investigators

from the ADNI and the NACC studies for sharing the data.

This project was supported by grants from the Karen Toffler Charitable Trust, the American Heart Associ-

ation (20SFRN35460031), and the National Institutes of Health (RF1-AG062109, R01-HL159620, R21-

CA253498, R43-DK134273, RF1-AG072654, U19-AG068753 and P30-AG013846). We acknowledge grant

support from Boston University, CTSI 1UL1TR001430, for our REDCap Survey.

Our graphical abstract utilized the following icons, each modified with color, all from thenounproject.com

CC BY 3.0: ‘‘Neural Network’’ icon by Knut M. Synstad, ‘‘MRI’’ icon by Flowicon, ‘‘Doctor’’ icon by Olivia,

‘‘Brain’’ icon by voneff, ‘‘meter’’ icon by WEBTECHOPS LLP, ‘‘Brain’’ icon by Line Icons Pro, ‘‘Headache’’

icon by Gan Khoon Lay, ‘‘Computer’’ icon by Soni Sokell, and ‘‘Arrow’’ icon by Colourcreatype.

AUTHOR CONTRIBUTIONS

Conceptualization, M.F.R. and V.B.K.; Data curation: M.F.R., X.Z., A.R.B., M.F.J., S.Q., D.A.N., and P.S.J.;

Formal analysis: M.F.R., X.Z., A.R.B., M.F.J., P.S.J., and S.M.; Funding acquisition: R.A., V.B.K.; Investigation:

M.F.R., X.Z., A.R.B., V.B.K.; Methodology: M.F.R., X.Z., A.R.B., and V.B.K.; Project administration: M.F.R.,

R.A., V.B.K.; Resources: V.B.K.; Software: M.F.R., X.Z., A.R.B.; Supervision: V.B.K.; Validation: M.F.R., X.Z.,

A.R.B., S.M., P.H.L., M.J.S., A.B.P., A.Z.M., J.E.S., S.P.C.; Visualization: M.F.R., X.Z., A.R.B.; Writing – original

draft: M.F.R., X.Z., A.R.B., V.B.K.; Writing – review & editing: All authors.

DECLARATION OF INTERESTS

V.B.K. reports honoraria from invited scientific presentations not exceeding $5000/year. He also serves as a

consultant to Davos Alzheimer’s Collaborative and AstraZeneca. R.A. is a scientific advisor to Signant

Health and consultant to Biogen. The remaining authors declare no competing interests.

INCLUSION AND DIVERSITY

We support inclusive, diverse, and equitable conduct of research.

Received: May 9, 2023

Revised: July 19, 2023

Accepted: July 28, 2023

Published: August 2, 2023
REFERENCES

1. (2020). 2020 Alzheimer’s disease facts and

figures. Alzheimer’s Dementia 16, 391–460.
https://doi.org/10.1002/alz.12068.

2. Schneider, L.S., Mangialasche, F., Andreasen,
N., Feldman, H., Giacobini, E., Jones, R.,
Mantua, V., Mecocci, P., Pani, L., Winblad, B.,
and Kivipelto, M. (2014). Clinical trials and
late-stage drug development for Alzheimer’s
disease: an appraisal from 1984 to 2014.
J. Intern. Med. 275, 251–283. https://doi.org/
10.1111/joim.12191.

3. Robinson, J.C. (2021). Why Is Aducanumab
Priced at $56,000 per Patient? Lessons for
Drug-Pricing Reform. N. Engl. J. Med. 385,
iScience 26, 107522, September 15, 2023
2017–2019. https://doi.org/10.1056/
nejmp2113679.

4. Mitchell, A.J., and Shiri-Feshki, M. (2009).
Rate of progression of mild cognitive
impairment to dementia - meta-analysis of 41
robust inception cohort studies. Acta
Psychiatr. Scand. 119, 252–265. https://doi.
org/10.1111/j.1600-0447.2008.01326.x.

5. Varatharajah, Y., Ramanan, V.K., Iyer, R., and
Vemuri, P.; Alzheimer’s Disease
Neuroimaging Initiative (2019). Predicting
Short-term MCI-to-AD Progression Using
Imaging, CSF, Genetic Factors, Cognitive
Resilience, and Demographics. Sci. Rep. 9,
2235. https://doi.org/10.1038/s41598-019-
38793-3.

6. Lin, W., Tong, T., Gao, Q., Guo, D., Du, X.,
Yang, Y., Guo, G., Xiao, M., Du, M., and Qu,
X.; Alzheimer’s Disease Neuroimaging
Initiative (2018). Convolutional Neural
Networks-Based MRI Image Analysis for the
Alzheimer’s Disease Prediction From Mild
Cognitive Impairment. Front. Neurosci. 12,
777. https://doi.org/10.3389/fnins.2018.
00777.

7. Armstrong, M.J., Song, S., Kurasz, A.M., and
Li, Z. (2022). Predictors of Mortality in
Individuals with Dementia in the National

https://doi.org/10.1016/j.isci.2023.107522
http://thenounproject.com
https://doi.org/10.1002/alz.12068
https://doi.org/10.1111/joim.12191
https://doi.org/10.1111/joim.12191
https://doi.org/10.1056/nejmp2113679
https://doi.org/10.1056/nejmp2113679
https://doi.org/10.1111/j.1600-0447.2008.01326.x
https://doi.org/10.1111/j.1600-0447.2008.01326.x
https://doi.org/10.1038/s41598-019-38793-3
https://doi.org/10.1038/s41598-019-38793-3
https://doi.org/10.3389/fnins.2018.00777
https://doi.org/10.3389/fnins.2018.00777


ll
OPEN ACCESS

iScience
Article
Alzheimer’s Coordinating Center.
J. Alzheimers Dis. 86, 1935–1946. https://doi.
org/10.3233/jad-215587.

8. Chen, J., Chen, G., Shu, H., Chen, G., Ward,
B.D., Wang, Z., Liu, D., Antuono, P.G., Li,
S.-J., and Zhang, Z.; Alzheimer’s Disease
Neuroimaging Initiative (2019). Predicting
progression from mild cognitive impairment
to Alzheimer’s disease on an individual
subject basis by applying the CARE index
across different independent cohorts. Aging
11, 2185–2201. https://doi.org/10.18632/
aging.101883.

9. Sabuncu, M.R. (2013). A Bayesian Algorithm
for Image-Based Time-to-Event Prediction. In
Machine Learning in Medical Imaging
(Springer International Publishing),
pp. 74–81. https://doi.org/10.1007/978-3-
319-02267-3_10.

10. Barnes, D.E., Cenzer, I.S., Yaffe, K., Ritchie,
C.S., and Lee, S.J.; Alzheimer’s Disease
Neuroimaging Initiative (2014). A
point-based tool to predict conversion from
mild cognitive impairment to probable
Alzheimer’s disease. Alzheimers Dement. 10,
646–655. https://doi.org/10.1016/j.jalz.2013.
12.014.

11. Nguyen, M., He, T., An, L., Alexander, D.C.,
Feng, J., and Yeo, B.T.T.; Alzheimer’s Disease
Neuroimaging Initiative (2020). Predicting
Alzheimer’s disease progression using deep
recurrent neural networks. Neuroimage 222,
117203. https://doi.org/10.1016/j.
neuroimage.2020.117203.

12. Li, H., Habes, M., Wolk, D.A., and Fan, Y.;
Alzheimer’s Disease Neuroimaging Initiative
and the Australian Imaging Biomarkers and
Lifestyle Study of Aging (2019). A deep
learning model for early prediction of
Alzheimer’s disease dementia based on
hippocampal magnetic resonance imaging
data. Alzheimers Dement. 15, 1059–1070.
https://doi.org/10.1016/j.jalz.2019.02.007.

13. Nakagawa, T., Ishida, M., Naito, J., Nagai, A.,
Yamaguchi, S., and Onoda, K.; Alzheimer’s
Disease Neuroimaging Initiative (2020).
Prediction of conversion to Alzheimer’s
disease using deep survival analysis of MRI
images. Brain Commun. 2, fcaa057. https://
doi.org/10.1093/braincomms/fcaa057.

14. Michaud, T.L., Kane, R.L., McCarten, J.R.,
Gaugler, J.E., Nyman, J.A., and Kuntz, K.M.;
Alzheimer’s Disease Neuroimaging Initiative
(2015). Risk Stratification Using Cerebrospinal
Fluid Biomarkers in Patients with Mild
Cognitive Impairment: An Exploratory
Analysis. J. Alzheimers Dis. 47, 729–740.
https://doi.org/10.3233/JAD-150066.

15. Harrell, F.E., Lee, K.L., and Mark, D.B. (1996).
Multivariable Prognostic Models: Issues in
Developing Models, Evaluating Assumptions
and Adequacy, and Measuring and Reducing
Errors. Stat. Med. 15, 361–387. https://doi.
org/10.1002/(sici)1097-0258(19960229)
15:4<361::Aid-sim168>3.0.Co;2-4.

16. Khajehpiri, B., Moghaddam, H.A.,
Forouzanfar, M., Lashgari, R., Ramos-Cejudo,
J., Osorio, R.S., and Ardekani, B.A.;
Alzheimer’s Disease Neuroimaging Initiative
(2022). Survival Analysis in Cognitively Normal
Subjects and in Patients with Mild Cognitive
Impairment Using a Proportional Hazards
Model with Extreme Gradient Boosting
Regression. J. Alzheimers Dis. 85, 837–850.
https://doi.org/10.3233/jad-215266.

17. Li, H., Boimel, P., Janopaul-Naylor, J., Zhong,
H., Xiao, Y., Ben-Josef, E., and Fan, Y. (2019).
Deep Convolutional Neural Networks For
Imaging Data Based Survival Analysis Of
Rectal Cancer. In 2019 IEEE 16th International
Symposium on Biomedical Imaging (ISBI
2019), 4/2019 (IEEE), pp. 846–849.

18. Mobadersany, P., Yousefi, S., Amgad, M.,
Gutman, D.A., Barnholtz-Sloan, J.S.,
Velázquez Vega, J.E., Brat, D.J., and Cooper,
L.A.D. (2018). Predicting cancer outcomes
from histology and genomics using
convolutional networks. Proc. Natl. Acad. Sci.
USA 115, E2970–E2979. https://doi.org/10.
1073/pnas.1717139115.

19. Ge, X.-Y., Cui, K., Liu, L., Qin, Y., Cui, J., Han,
H.-J., Luo, Y.-H., and Yu, H.-M. (2021).
Screening and predicting progression from
high-risk mild cognitive impairment to
Alzheimer’s disease. Sci. Rep. 11, 17558.
https://doi.org/10.1038/s41598-021-96914-3.

20. Sharma, R., Anand, H., Badr, Y., and Qiu, R.G.
(2021). Time-to-event prediction using
survival analysis methods for Alzheimer’s
disease progression. Alzheimers Dement. 7,
e12229. https://doi.org/10.1002/trc2.12229.

21. Katzman, J.L., Shaham, U., Cloninger, A.,
Bates, J., Jiang, T., and Kluger, Y. (2018).
DeepSurv: personalized treatment
recommender system using a Cox
proportional hazards deep neural network.
BMCMed. Res. Methodol. 18, 24. https://doi.
org/10.1186/s12874-018-0482-1.

22. Gensheimer, M.F., andNarasimhan, B. (2019).
A scalable discrete-time survival model for
neural networks. PeerJ 7, e6257. https://doi.
org/10.7717/peerj.6257.

23. Lee, C., Zame, W., Yoon, J., and Van Der
Schaar, M. (2018). DeepHit: A Deep Learning
Approach to Survival Analysis With
Competing Risks. In Proceedings of the AAAI
Conference on Artificial Intelligence, p. 32.
https://doi.org/10.1609/aaai.v32i1.11842.

24. Khanna, S., Domingo-Fernández, D.,
Iyappan, A., Emon, M.A., Hofmann-Apitius,
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RESOURCE AVAILABILITY

Lead contact

Further information regarding this manuscript and requests should be directed to the lead contact, Vijaya

B. Kolachalama, PhD (vkola@bu.edu).
Materials availability

This study did not generate any new materials.

Data and code availability

d The raw data reported in this study cannot be deposited in a public repository as users must apply to

either NACC or ADNI for access. Access to the raw imaging and demographic data are available via

https://naccdata.org/ and http://adni.loni.usc.edu/ for the NACC and ADNI datasets, respectively.

d All original code has been deposited at https://doi.org/10.5281/zenodo.8176269 and is publicly avail-

able as of the date of publication.

d Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.

d Python scripts are made available on GitHub (https://github.com/vkola-lab/iscience2023).
METHOD DETAILS

Study population and data selection

Data were collected from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) for pre-training, training,

internal validation, and internal testing (discovery dataset), and from the National Alzheimer’s Coordi-

nating Center (NACC) for external testing (validation dataset).
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ADNI cohort

ADNI comprises a longitudinal study consisting of data from many participating centers with an overall

goal of facilitating the development of novel therapeutics by identifying biomarkers that identify AD

and portend progression to AD. For this dataset, visits for all subjects were selected from the person reg-

istry with a last user date of April 9, 2020; this includes subjects enrolled in ADNI 1, ADNI GO, ADNI 2, and

ADNI 3. General requirements for all phases of the study included persons between 55-90 years old, a part-

ner able to be present for collateral, a Geriatric Depression Scale less than 6, and fluency in one of Spanish

or English. Mild cognitive impairment (MCI) was defined by ADNI similarly across all 4 phases. To qualify as

MCI, consistent criteria included the following: a person had to have 1) a complaint about some aspect of

cognition; 2) Mini-Mental State Exam (MMSE) scoreR 24 and a clinical dementia rating (CDR) equal to 0.5

with preserved daily function; and crucially, 3) some measured memory loss based on a Logical Memory

test, adjusted for years of education. Persons had to have the amnestic domain affected to be enrolled.

To meet criteria for AD, a person had to have a CDR R 0.5, MMSE % 26, an abnormal Logical Memory

test, and meet criteria for AD based on NINCDS-ADRDA criteria for probable AD.43

Please see http://adni.loni.usc.edu/methods/documents/for more details.

From the collected data, the selected visit was defined based on when persons had a 3 Tesla T1-weighted

MRI scan (ADNI search criteria included scans between 2.7 and 3.1 Tesla), CSF data collected, and a diag-

nosis of mild cognitive impairment (either late or early mild cognitive impairment where specified), as made

by clinicians using multimodal criteria specified by ADNI. In sum, 51 persons were selected from ADNI1 (45

at the baseline visit, 2 at month 12, and 1 each at month 60, 96, 108, and 120), 113 from ADNIGO (112 at the

baseline visit, 1 at month 24), 321 from ADNI2 (309 at the baseline visit, 11 at month 24, and 1 at month 48),

and 59 from ADNI3 (all at baseline visit), yielding 544 total participants after having excluded 1 for poor im-

age co-registration.
ADNI image selection

Raw MRI images on the ADNI database were queried using the keyword arguments *MP*RAGE* and

*SPGR*, corresponding to magnetization-prepared rapid gradient-echo and spoiled gradient-recalled

echo, respectively. Once downloaded, images were first filtered by the desired date for each person’s

MCI visit. Then, the Mayo Clinic quality control information was used to further inform which image to use.

If there was more than a single image at a given visit for each person, images were selectively kept using

the following criteria in the following order of importance: being fully sampled (i.e., the image description

did not contain the phrases ‘‘SENSE’’, ‘‘ACCEL’’, or ‘‘GRAPPA’’); receiving a ‘‘pass’’ on the Mayo Clinic quality

control sheet where this information was available; being taken at the most recent date; being chosen in the

Mayo Clinic quality control sheet as ‘‘selected’’; and finally, if there was still more than a single scan remaining,

the image with the highest image ID, which generally corresponded to the latest image obtained in a series,

was taken. If at any point application of these criteria led to removal of all scans for a given subject, the step

was skipped to keep as many scans as possible (for example, if a subject only had accelerated MRI scans,

accelerated MRI scans were used for that subject). This image selection process is illustrated in Figure S2.
CSF analysis

CSF data in the ADNI dataset were utilized from the UPENNBIOMK9 and UPENNBIOMK10 files provided

on the ADNI website. In both files, biomarkers were analyzed via a Roche Elecsys e 601 instrument. Of note,

the upper limit of this instrument was 1700 pg/mL, and the lower limit 200 pg/mL. Values above the upper

limit were extrapolated via a calibration curve before they were downloaded from the ADNI website.
ADNI image curation for pre-training

For pre-training our deep-learningmodels, we constructed a dataset consisting of MRIs from unused persons

in the ADNI cohort. These consisted of all 3-Tesla MRI images, IR-(F)SPGR andMP-RAGE, that we obtained at

our collection date in the ADNI dataset, for persons that were not used for the main part of the study and did

not at some point meet the criteria that included a diagnosis of MCI, CSF data, and a 3T MRI at a single visit.

We sought to utilize images that were uncorrelated with the data that we were using for model evaluation and

training, but that represented a type of data similar in quality to the training and testing data. Similar ap-

proaches were utilized previously with good success.44 Images that did not have diagnoses at the time of

the visit were excluded, and we utilized images with a diagnosis of CN or AD for pre-training our final
16 iScience 26, 107522, September 15, 2023

http://adni.loni.usc.edu/methods/documents/


ll
OPEN ACCESS

iScience
Article
CNN model (Table 1).44 There were 4,827 total unique images. For three visits, two images existed carrying

the same image ID. One of the images was selected and utilized twice in these cases.

NACC cohort

The NACC database hosts a Uniform DataSet comprised of longitudinal data, collected from persons in

National Institute on Aging Alzheimer’s Disease Research Centers (ADRCs), each with its own protocol

for enrollment, and each with its own protocol for diagnosis of disease (a team of physicians versus a single

physician). Subjects in our study were selected from a data freeze on December 12, 2020. For each subject,

visits where the subject had mild cognitive impairment (amnestic or non-amnestic, single, or multiple

domain) were identified. In the NACC cohort, MCI persons were defined as those with preserved day to

day function, though with a concern from the person, person’s partner, or physician about the person’s

cognition and impairment in at least one cognitive domain. Dementia was diagnosed by a measured

and clinically determined progressive decline in cognitive ability with impacted day-to-day function, in

addition to impairment in at least one of five cognitive domains. AD was determined by clinical judgment

based on available data.

Out of all visits for each person who had an MCI diagnosis, the visit closest to a date at which they had a 3T,

T1-weighted MRI was kept. If the time between the clinical visit and MRI was longer than 6 months, the per-

son was dropped from consideration. CSF values were assigned to the nearest diagnostic visit provided the

visit occurred within G6 months. CSF values in the NACC dataset were all obtained via an ELISA assay

method (total of 21 samples).

Metadata for each of the T1-weighted scans were used to select which T1-weighted MRI to use out of the

several MRIs available for each visit. Only three-dimensional, original, SPGR orMPRAGE images were used.

Their single smallest dimension had to be at least 80 voxels. If a person had fully sampled scans, these were

selected in place of any accelerated scans such as GRAPPA or SENSE. Finally, if there was more than a sin-

gle image left for a person, an image collected that met the criteria was selected at random but with pref-

erence to the most recently acquired scans. Image curation and metadata pre-processing for NACC is

shown in Figure S3.

Race and ethnicity

In terms of ethnicity, patients were classified as ‘‘Not Hispanic or Latino’’, ‘‘Hispanic or Latino’’, or

‘‘Unknown’’. For our statistical analysis, patients with an ‘‘Unknown’’ ethnicity were excluded. For anal-

ysis of race, both cohorts contained the categories ‘‘Asian’’, ‘‘Native Hawaiian or Pacific Islander’’,

‘‘American Indian or Alaskan Native’’, ‘‘White’’, ‘‘Unknown’’, and ‘‘Black or African American’’. ADNI

contained the additional designations ‘‘More Than One Race’’, and NACC contained the additional

designation ‘‘Multiracial’’, which were considered to be the same. Several patients had different values

for ethnicity at different visits, and several had different values for race at different visits. These patients

were denoted as having a value of ‘‘Unknown’’ for the respective category. For the purposes of

comparing proportions of non-white participants in either dataset, patients falling into the category

‘‘Unknown’’ were excluded.

Image registration, normalization, and segmentation

We utilized two pipelines for pre-processingMRI scans depending on the respective deep-learningmodel to

be used. For models that required a single-dimensional input (the multi-layer perceptrons (MLPs), Cox pro-

portional hazard (CPH) model, and Weibull model), we utilized the CAT12.7 v.1728 toolbox40 (https://neuro-

jena.github.io/cat/) to parcellate brains into gray matter volumes (GMVs) and CSF volumes corresponding to

the Neuromorphometrics atlas (Neuromorphometrics, Inc.). For our CPH model and base MLP, GMVs for

each region of interest (ROI) were averaged across hemispheres and normalized to total intracranial volume,

yielding hemisphere averaged, normalized GMVs. In addition, for these models, GMVs for regions corre-

sponding to ventricles were removed from further analysis (CSF, 3rd, 4th, inferior lateral, and lateral ventri-

cles). To align with the work of Nakagawa et al.,13 we kept laterality and ventricles in the Weibull model.

Separately, to ensure that excluding data regarding CSF volume and laterality did not significantly affect

our MLP model fit, we constructed a supplementary multi-layer perceptron including normalized GMVs

separately for each hemisphere, in addition to CSF volumes normalized by total intracranial volume sepa-

rately for each hemisphere.
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Regions were assigned to larger regions denoted as ‘‘lobes’’ as detailed in Table S4. Specifically, regions

within the frontal, parietal, and occipital lobe were each grouped together. The temporal lobe was split into

mesial and non-mesial temporal lobe, where the mesial temporal lobe consisted of the entorhinal area,

parahippocampal gyrus, hippocampus, and amygdala. Other regions were assigned accordingly.

For our CNN model, which takes three-dimensional images as input, we constructed a pipeline to skull-

strip raw T1-weighted MRIs and transform them into a common space. We used a standard SPM 12

v.7771 (https://www.fil.ion.ucl.ac.uk/spm/software/spm12/) pipeline consisting of (1) Segmentation of

each brain into gray matter, white matter, and CSF and computation of normalization parameters; (2)

Bias-correction of the initial brain; (3) Normalization of the bias-corrected brain into Montreal Neurological

Institute (MNI) space; (4) Masking each normalized, bias-corrected brain by thresholding the sum of the

gray matter, white matter, and CSF probability atlases at a value of 0.2, and taking the pointwise product

of the normalized brain and the brain mask. Image processing steps are visualized in Figure S4.
CSF-based risk group analysis

Centroid computation

To ground our imaging findings in biomarker data, we utilized CSF amyloid-b (Ab), which was widely avail-

able in the ADNI cohort. This is an attractive biomarker due to its direct implication early in the disease pro-

cess. It is well established that Ab level is related to rates of cognitive decline45 and can be used to identify

persons with MCI who progress to AD.46 As a preliminary step, we divided MCI subjects in the ADNI cohort

based on Ab quartiles. GMVs for each person in ADNI were Z-scored region-wise using the respective

mean and standard deviation for a given ROI, and Z-scored GMVs were averaged within each CSF-based

risk group to compute centroids associated with each quartile of Ab. These Z-scored GMV centroids were

denoted as H (high), IH (intermediate-high), IL (intermediate-low), or L (low) risk, corresponding to the

lowest through the highest concentration of CSF Ab, respectively.

CSF-based risk group assignment

To assign final risk groups, GMVs for persons in ADNI and NACC were each Z-scored to the respective ROI’s

mean and standard deviation from the ADNI dataset. Spearman’s correlation coefficient was then calculated

between these Z-scored GMVs for each person and each of the four above mentioned centroids. The risk

group corresponding to the highest correlation coefficient was assigned as the final risk group for that person.
Expert-driven assessment

For radiological analysis, a REDCap survey47,48 was administered to five independent, board-certified neuro-

radiologists in the United States. Forty-eight separate MRIs were selected, randomly, with 12 coming from

each CSF-based risk group, 6 out of each 12 corresponding to persons who progressed from MCI to AD,

and 6 out of each 12 who were censored or did not otherwise progress. Radiologists were first asked whether

each of the following regions demonstrated atrophy in either hemisphere: frontal lobe, mesial temporal lobe,

remainder of the temporal lobe, occipital lobe, parietal lobe, cingulate gyrus, and insula. If they identified the

presence of atrophy, then they were asked to identify the extent to which each hemisphere demonstrated at-

rophy on a scale from no atrophy (assigned a numeric rating of 0) to severe atrophy (assigned a numeric rating

of 3). Additional subregions within each lobe were assessed but not utilized for our final analysis.
Deep learning framework

All models were trained using the ADNI dataset. The data were split in a 3:1:1 fashion, and 5-fold cross vali-

dation was used.Models were tested on theNACCdataset. Pytorch was used for all deep learning analyses.41

Multi-layer perceptron

Amulti-layer perceptron (MLP) was utilized to predict a person’s probability of progression fromMCI to AD

in each of three time bins following the MCI visit, using a survival loss function from Gensheimer and

Narasimhan22:

Lossj =
Xdj

i

ln
�
hj

i
�
+

Xrj

i = dj+1

ln
�
1 � hj

i
�
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Where j stands for time interval j, hj
i is the disease hazard probability for individual i during time interval j

(provided this individual didn’t progress yet), there are rj individuals ‘in view’ during the interval j (i.e., didn’t

progress at the beginning of j), and the first dj of them progressed during this interval.

The total loss is then:

LossS =
XN
j

Lossj

Where LossS is the sum of loss for each time interval, and N is the total number of time intervals.

The time intervals are left-inclusive (i.e. [0,12), [12,24), etc.). Thus, when predicting that an individual, who is

censored, survives at least to the end of interval j, the probability that they survive to that time is:

Pr ðSurvivalÞ =
Yj

i = 1

ð1 � hiÞ:

To compute the likelihood that a given interval progresses at time j, the formula is:

L = hj

Yj� 1

i = 1

ð1 � hiÞ

Finally, the likelihood of a given individual who is censored surviving to the latter half of time interval j-1 or

the beginning half of j can be given as:

L =
Yj� 1

i = 1

ð1 � hiÞ

For additional details, refer to Gensheimer and Narasimhan.22

Hemisphere-averaged, normalized GMV was utilized as input for this model as detailed above; that is,

normalized GMV were averaged across hemispheres for each brain region (i.e., the right hippocampus

and left hippocampus were averaged together to create a single hippocampus region).

The model architecture for this neural network consisted of a batch-normalization layer, followed by

dropout, batch-normalization and leaky rectified linear-unit layers. This output was fed into a final linear

layer, transformed via a sigmoid layer, and fed into a survival loss function. Thus, the network was trained

to compute the conditional probabilities of survival in each of three time bins: 0-24 months, 24-48 months,

and 48-108 months following the MCI visit, all left-side inclusive. The model was saved whenever it had a

lower total survival loss on the validation set.
Survival convolutional neural network

A modified convolutional neural network (CNN) with a survival loss function was similarly trained to pre-

dict the risk of disease progression. T1-weighted MRI scans that were preprocessed with the SPM pipe-

line detailed above were used as input for this model. As a result of the different loss function, we de-

noted it as the survival convolutional neural network (S-CNN) (Figure S1). In this model, 3D convolution

was used to handle the volumetric MRI scans. We performed hyperparameter optimization on the S-CNN

model to maximize its potential. Specifically, we experimented with various combinations of layers (i.e.,

convolutional and dense layers, transformer and dense layers, etc.), different layer parameters (i.e.,

dropout rate, number of filters, batch size, learning rate, sample weights, and optimization metrics),

as well as the use of transformed models from other datasets (i.e., fixed vs. learnable layers). During

training, layers could range from 1 to 5; the dropout rate could vary from 0 to 0.75; the number of filters

could vary between 1 to 50; the batch size was adjustable from 2 to 30; the learning rate could vary from

1e-8 to 1e-2; the sample weights included standard weight (where each sample carries the same weight)

or inverse propensity weighting; the optimization metrics could be either loss-based or CI-based; and

the final tuning of the transferred model involved freezing layers based on performance on the validation

set. The final model was selected based on its concordance index at 24 months measured on the external

(NACC) dataset.
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For our final model, we utilized 2 convolutional layers and 2 dense layers. The model was trained for 2000

epochs, with a learning rate of 0.01, batch size of 10, drop rate of 0.3, filter number of 10 for first conv layer,

and 20 for last conv layer. Stochastic gradient descent was utilized as an optimizer. Each convolutional

layer’s kernel size was set to be 3, with a stride of 1 and no padding, and batch normalization was applied

throughout the convolutional layers. After the normalization step, a leaky rectified linear unit was utilized as

the activation function. Following this, a max-pooling layer of size 2 was attached. In addition to L2 normal-

ization (weight=0.01), dropout layers (probability=0.3) were also used to boost the robustness of the

network. Finally, we flattened the output and applied fully connected layers for the final prediction of risks.

Before training, we initialized the weights using the default initializer (Kaiming Uniform method). Addition-

ally, we calculated weights for each training sample based on their class frequency. During training on the

MCI-to-AD prediction data, the model was saved whenever it had a better concordance index on the ADNI

validation set at time 24 months.

Transfer learning is amethod that initializesmodel A’s weights using a pretrainedmodel B’s weights instead of

random initialization. This method has been proven useful and is widely used in many tasks. We found that

transfer learning improved the performance of our models. We adopt an approach similar to that of Oh

et al.,44 and pre-trained our SCNN on a set of 4,827 images corresponding to persons diagnosed with either

AD or normal cognition obtained from the ADNI dataset, except on a classification task using a cross-entropy

loss. For final training, weights for all layers aside from the final dense layers were fixed. Parameters that differ

from the above include a dropout rate of 0.01, learning rate of 0.001, and 100 training epochs.
Reference models

To compare our models against the current state-of-the-art, we trained a model based on Nakagawa

et al.13 and an additional, more simple Cox regression with both L1 and L2 regularization.

Briefly, Nakagawa et al.13 use their training data to estimate parameters for aWeibull survival model. As input,

they utilize parcellated gray matter volumes directly obtained using two atlases, the automated anatomical

labeling atlas and the Brainnetome Atlas, via a similar process to ours using the Computational Anatomy

Toolbox. Therefore, we utilized our raw parcellations from the Neuromorphometrics atlas, without averaging

across hemispheres, as input to their model to establish a fair comparison. We constructed a model identical

to theirs otherwise, thoughwithout early stopping and for 1000 total epochs instead of 200. Further, to accom-

modate the length of follow-up in our dataset, we extend predictions out to 9 years.
Cox proportional hazard model

Cox proportional hazard-based (CPH-based) models are used throughout the literature to estimate poten-

tial relationships between survival and a set of variables. Therefore, we constructed a baseline model using

this framework utilizing the python package lifelines49 (https://lifelines.readthedocs.io/en/latest/). Bre-

slow’s non-parametric method was used to estimate the baseline hazard function, and we utilized the

same input used by our multi-layer perceptron model (hemisphere-averaged, normalized gray matter vol-

umes) after Z-scoring these values to the training data for each fold. Models were trained using the same

3:1:1 cross-fold validation scheme, and grid-search was conducted utilizing the validation dataset to iden-

tify two parameters: the regularization weight, and the ratio of L1 to L2 loss. Concordance index was used

as the metric of performance during grid-search. Survival predictions were obtained using the Cox Propor-

tional Hazard class method predict_survival_function.
Interpretability analysis

SHAP value computation

SHaply Additive exPlanations (SHAP) were utilized to determine the contribution of each input feature

(voxel) to the predicted survival of each person. SHAP values have been widely utilized to provide a mea-

sure of inference to machine learning models.37,50,51 To compute SHAP values, we utilized the DeepLIFT

algorithm via the deepexplainer method from the SHAP package (https://github.com/slundberg/shap)

in conjunction with our S-CNN model. Due to the large amount of memory required, a small subset of

training data (6 samples) was used as the background data to compute expected values for each feature.

SHAP values were computed for our NACC dataset and their absolute values were averaged across all

three output time-bins (0-24, 24-48, and 48-108 months) and all five experiments for each person, yielding

SHAP brains.
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SHAP value analysis

For each SHAP brain, we first averaged across each risk group, generating 4 risk group averaged SHAP brains.

We subtracted lower risk from higher risk group averaged SHAP brains, yielding subtracted SHAP brains. We

then computed the mean and standard deviation across all voxels for each subtracted SHAP brain. The sub-

tracted SHAP brains were Z-scored and thresholded at a value of 2.5 for plotting (Figure 5A).

Next, we sought to summarize the importance of each voxel to CNN output within brain regions. To

achieve this task, we computed masks for each of 10 regions (basal ganglia, mesial temporal lobe, other

temporal lobe regions, parietal lobe, cingulate gyrus, subcortical areas, occipital lobe, frontal lobe, cingu-

late cortex, and insula) using the Neuromorphometrics atlas obtained from SPM12 and computed the

average, absolute voxel value for each SHAP brain within each of these regions. Pairwise comparisons

were made within each risk group using pairwise Wilcoxon signed-rank tests, and p-values were corrected

via a Benjamini-Hochberg procedure within each risk group. We plotted bar graphs of the mean absolute

SHAP value, averaged across voxels within each lobe, using ggplot2, computing confidence intervals via a

bootstrap method with 10,000 samples.

Pathology analysis

Postmortem pathology data were collated for persons in NACC to confirm accuracy of the model predic-

tions. We used ADNC (AD neuropathological change) as an aggregate measurement of AD neuropa-

thology, as it is a composite of characteristic amyloid plaques, neurofibrillary tangles, and neuritic plaques,

the latter two of which translate to Braak staging and CERAD score, respectively.52 Persons were grouped

by severity within each pathology measure and pairwise comparisons of proportions of persons who prog-

ress to AD were performed with Fisher exact tests with Benjamini-Hochberg correction for multiple

comparisons.

QUANTIFICATION AND STATISTICAL ANALYSIS

Throughout the manuscript, statistical significance was defined as a p-value less than 0.05 after correcting

for multiple comparisons where necessary and as described below. Estimates for statistical parameters, de-

grees of freedom where applicable, and the n for each statistical test are included throughout the results

section of the manuscript, aside from statistical tests involving comparisons for survival curves, where n are

included in the respective figure (Figure 1 or Figure 2, respectively). Most statistical tests utilized in the

manuscript are non-parametric (Kruskal-Wallis and Mann-Whitney U tests, for example), and therefore

distributional assumptions were not required.

Demographics analysis

Seaborn (https://seaborn.pydata.org/) was used for scatter plots and violin plots in Figure 1,53 and Scipy

(https://scipy.org/) was used to compute Kruskal-Wallis tests, Chi-square tests, and Mann-Whitney U tests

in this figure.54 The p-values were corrected using Benjamini-Hochberg corrections (the Dunn test with a

Benjamini-Hochberg correction is used for Kruskal-Wallis post-hocs). Bar plots were created using pandas

version 1.0.1. (https://pandas.pydata.org/).

Gray matter volume analysis

To compare gray matter volumes between different CSF-based risk groups, Z-scored gray matter volumes

were averaged across each brain region for each patient in the ADNI dataset. A Kruskal-Wallis test was per-

formed using person-averaged, Z-scored gray matter volumes as individual datapoints.

Empirical survival analyses

For survival analyses, we utilized the lifelines package.49 The class KaplanMeierFitter was used to plot

empirical Kaplan-Meier plots, and the function survival_differences_at_fixed_point_in_time_test was

used to compute differences in survival at different time points. The CoxPHFitter class was used to

compute hazard ratios and their 95% confidence intervals (Figures 1A and 2B). False discovery rate

(FDR) p-value corrections were performed using a Benjamini-Hochberg correction for each family of pair-

wise p-values corresponding to each dataset and time point for Figure 2B for the survival_differences_at_-

fixed_point_in_time_test. For hazard ratios, FDR corrections weremade for each family of pairwise p-values

corresponding to each dataset. The statsmodels (https://www.statsmodels.org/stable/index.html) python

library was used to compute FDR corrections.
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Radiology analysis

For expert grading of MRI images, the order of the images was randomized in terms of CSF-driven risk-

based subtype before being distributed to the radiologists. Grades for the cingulate cortex, frontal

lobe, insula, mesial temporal lobe, non-mesial temporal lobe, occipital lobe, and parietal lobe were uti-

lized. Radiologists also assessed atrophy of subregions within these areas, though these were not utilized

for analysis for simplicity. First, radiology grades for each subject were averaged across both lobes and

across radiologists and plotted using the seaborn package (Figure 3A). To compare between high and

low-risk populations, the H and IH grades were treated as a single group and then tested against a group

constituted by the L and IL grades. Mann-Whitney U tests were performed using the statsmodels package,

with p-values corrected via a Benjamini-Hochberg procedure. To assess agreement in ratings between ra-

diologists, pathology grades (none, mild, moderate, and severe) were converted into numeric scores, and

intraclass correlation coefficients using absolute agreement were computed for each region in both hemi-

spheres using the ordinal package in R. Intraclass correlation coefficients were chosen due to the ordinal

nature of radiology grades.

Finally, to assess the relationship between gray matter volume in our parcellated atlas and radiologist

grading, we obtained the average radiologist grading of each of the above brain regions and averaged

these values between hemispheres and over all radiologists for each of the 48 individuals selected for

grading. For comparison, gray matter volumes that were Z-scored using the mean and standard deviation

of each region in the ADNI dataset were obtained. These values were averaged within each ‘‘lobe’’ as de-

noted in Table S4 and plotted against the radiologist gradings for each region using the seaborn package

in python, with a 95% confidence interval computed using 1000 bootstrapped samples, the default in the

function lmplot (Figure 3B). Pathology grades were converted into numeric scores as above. Spearman cor-

relation coefficients were computed using Scipy and shown in Figure 3B.
Model-based statistics

Model performance was evaluated with concordance index (concordance_index_censored; CI) and inte-

grated Brier score (integrated_brier_score; BS) for each of the test folds in our 5-fold cross validation

scheme. The concordance index compares pairs of subjects and computes the proportion of pairs where

our prediction of survival (i.e., which of the subjects ‘‘out-survives’’ the other) matches ground truth. We

calculated the predicted probability of survival at 3 time points (i.e., bins), namely 24 months, 48 months,

and 108 months. Concordance index was calculated at each time bin and averaged within each test fold.

The Brier score is a statistic that measures the difference in survival for an individual against their predicted

survival, and so measures the accuracy of our predictions. We utilized the training data for each fold to es-

timate the censoring probability at each time point. If the test data set contained datapoints outside of the

range of the training data, predictions were truncated to this range and a new final bin survival probability

was interpolated using a piecewise cubic Hermite interpolating polynomial (Scipy). These statistics were

computed using scikit-survival (https://scikit-survival.readthedocs.io/en/stable/).55 Each model had a CI

and BS for each of the 5 test folds. Statistical analysis was performed with pairwise paired Student

T-tests and p-values were corrected with the Benjamini-Hochberg procedure.
Software packages

Some other software packages utilized were colorcet (https://colorcet.holoviz.org/, for certain color schemes),

lifelines, matplotlib (https://matplotlib.org/), nibabel (https://nipy.org/nibabel/, for reading and writing Nifti

files), nilearn (https://nilearn.github.io/stable/index.html, for plotting overlaid brain images), numpy (https://

numpy.org/), pandas, pytorch version 1.7.0 or 1.9.0 (https://pytorch.org/), and torchvision version 0.8.1 or

0.11.3 (https://pytorch.org/vision/stable/index.html).
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